Key Stage 5 Curriculum Journey: Year 13 Engineering	
The curriculum in Engineering equips learners with the knowledge to understand the processes of engineering including design, analysis, prototype of	development and evaluation,
and the role that engineering plays in the world. The subject is designed to inspire students to be innovate, creative and apply their knowledge in a	a way which is transferable to,
and draws on different real-life contexts such as design, mechanical and quality control engineering. Students are encouraged to move from the	ory to practice and to bring

Ś

			THE YEAR 13 CURRI	CULUM JOURNEY		
	HALF TERM 1	HALF TERM 2	HALF TERM 3	HALF TERM 4	HALF TERM 5	HALF TERM 6
Topic and learning focus	 Mechanical Engineering LO2 – the fundamental geometrical properties LO3 – levers, pulleys and gears LO4 – properties of beams Electrical Engineering LO3 – Power supplies and power transmission LO4 – DC Motors and Generators LO5 – Analogue circuits – the operational amplifier CAD Create assemblies of shapes where different bodies interact with each other. Learn how to incorporate animations and moving parts in CAD work. 		External examinations in Mechanical and Electrical Engineering. <u>CAD</u> • Using Fusion 360 to design and run physical simulations.			
Foundational Knowledge Prior learning needed	of circuits. Concepts of emf and An understanding of Fuses, resistors and A good understanding	ng of algebra, standard form and netry (including graphs of	mass/batch/one-off, etc.Stages of design cyclSustainability and re	'just in time, die casting, sand cas e. cycling cal analysis (from Unit 1)	ting	

their ideas into reality by developing solutions to technical issues

			1
	 Calculations of areas and volumes of simple 2d and 		
	3d shapes		
	Principle of moments		
	Construction and manipulation of 3d shapes in		
	Fusion 360.		
	FUSION SOU.		
Core Knowledge	• The components and sequence of a stabilised power	• Produce simple physical simulations using Fusion	
and skills	supply.	360.	
	 Recall the 3 main methods for AC-DC rectification. 		
	 Justify the need for 3 phase power and the 		
	relationships between the different phases.		
	 The general circuit layout of separately excited and self 		
	excited DC motors and generators.		
	-		
	 Analyse motors and generators using the defining assurtions 		
	equations.		
	Understand the structure of a DC power supply.		
	• Describe the operation and properties of inverting and		
	non-inverting op-amps.		
	 Calculate the gain of the inverting and non-inverting 		
	op-amp.		
	 Calculate the volumes of prisms 		
	 Use the density equation to calculate density, mass 		
	and volume of bodies.		
	 Calculate the centre of mass of 2d objects and 		
	understand the concept of centroid.		
	 Mechanical advantage and velocity ratio 		
	 The three classes of lever and how these can be used 		
	to solve engineering problems.		
	 Applications of moments to beams. 		
	 Types of beam and support conditions 		
	• Apply animations to Fusion 360 designs to show how		
	moving parts might behave in a working physical		
	product.		
	•		
Developmental	 Describe how the 3 methods for rectification 	Produce accurate and detailed physical simulations	
Knowledge and	work and compare how they might be used in different	from CAD models showing points of high stress and	
Skills	situations.	highlighting the function of the product.	
SKIIIS		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

ASHLAWN SCHOOL

Š

	Calculate phase and line voltage, describing the
	difference between them and explaining how the star
	and delta wiring configurations might be used.
	Describe the advantages and disadvantages of
	shunt wound and series wound motors and use these to
	justify the choice of motor type for different practical
	scenarios.
	• Explain the operation of the summing amplifier,
	calculating the gain and suggesting uses.
	Perform calculations analysing the effects of
	 different sizes of gear and gear ratios. Calculate the reactions of beams with simple
	supports or cantilevers.
	Compare the strengths and weaknesses of designs
	using animations to provide a more realistic view of
	the product.
Complex	Represent 3 phase power graphically and using
Knowledge	trigonometric equations.
Kilowicuge	• Evaluate the implications of back emf for both
	motors and generators.
	• Evaluate and calculate the effect of flux and other
	factors on motor speed.
	Calculate the mechanical advantage and velocity
	ratio for belt-driven systems
	Analyse beam systems by drawing bending moment
	diagrams.
	Use calculated quantities such as conductivity or
	Young Modulus to justify material choice.
Links with the	
National	
Curriculum	
Literacy	Reading and notetaking homework regularly set. For example reading from "Structures – or why things don't fall down"
(including	Reading Fusion 360 tutorial work.
reading)	Use of engineering case studies and latest news articles for homework and class based tasks.
	Use of research studies on new, emerging materials and their properties.
Cultural Capital	Understanding of the use and application of maths to solve real-world problems.
•	

Social, Moral, Spiritual and	 Mathematical based problem solving skills. An appreciation of the complexity of everyday systems. An understanding of the widespread use of electricity, how it is generated and subsequently transmitted to our homes. How structures work and what is required for buildings to be safely constructed. Use of computer software to develop and present ideas. Discussion and teamwork with opportunity for lots of collaborative working. Environmental impact of our manufacturing and design choices. The importance of careful use and selection of materials for minimal cost and environmental impact. The need to balance 	
Cultural Development Fundamental British Values	 environmental impact of our manufactuming and design choices. The importance of calculuse and selection of matchins for manufactuming and companies are required to operate in including safe working and the development and testing of safe products. An appreciation of the legal framework in which designers and companies are required to operate in including safe working and the development and testing of safe products. Analysis of products, identifying strengths and weaknesses to ensure that the correct products are chosen for the appropriate tasks. Mutual respect is fostered through collaborative working and sharing of ideas. 	
Assessment	 For units 3 and 4: 2 x 40 mark assessments per unit 2 x 60 mark past papers per unit For Mechanical Design:	