Exam board: OCR

Physics

A level

Transition booklet

Course leader	Miss S Kennedy	kennedys@ashlwn.org.uk
Teaching team	Mr I hardiman	hardimani@ashlawn.org.uk Mr A Hutchinson

This booklet will assist you in getting better prepared to study A Level Physics at Ashlawn school. You must work through the booklet and self assess to identify the topics/areas for improvement. Write a brief comment on your progress in the comments box as you complete each topic. This help will inform you with what you must revise prior to beginning the AS Physics course. Bring your copy of the completed booklet to your first A Level Physics lesson along with your prepared presentation.

The A Level course

Content Overview
Content is split into six teaching
modules:

- Module 1 - Development of practical skills in physics

Modelling physics (01)	$\mathbf{3 7 \%}$
100 marks 2 hours 15 minutes written paper	of total A level

- Module 2 - Foundations of physics
- Module 3 - Forces and motion
- Module 4 - Electrons, waves and photons
- Module 5 - Newtonian world and astrophysics
- Module 6 - Particles and medical physics

Component 01 assesses content from modules 1, 2, 3 and 5.

Component 02 assesses content from modules 1, 2, 4 and 6.

Component 03 assesses content from all modules (1 to 6).

Exploring physics
(02)
100 marks
2 hours 15 minutes
written paper

$\mathbf{3 7 \%}$
of total
A level

Unified physics
(03)
70 marks
1 hour 30 minutes
written paper

$\mathbf{2 6 \%}$
of total
A level

Practical Endorsement in physics (04) (non exam assessment)	Reported separately (see Section 5 g)

You can find the full specification by following this link https://www.ocr.org.uk/lmages/171726-specification-accredited-a-level-gce-physics-a-h5 56.pdf

Year 12 induction summer homework

Task 1:
Your task is to plan and prepare a 5 minute presentation on Electricity. An accompanying powerpoint/google slide is necessary.

Electricity

Must include the following information:

- What is potential difference?
- What is current?
- What is resistance?
- How are these concepts related?
- How do these concepts behave in series and parallel circuits?
- Are there any models/analogies which can be used to highlight your point.

The presentation should be pitched at the level of an A Level student and should therefore be as detailed and accurate as possible. You may also wish to include any information which you feel is relevant but not mentioned above.

The aim of this homework is so that your future teacher can identify misconceptions early and to ensure that students have a firm understanding of a key concept before starting the course.

A selection of presentations will be made to the class in the first week of term.
If you have any questions about this homework, please email kennedys@ashlawn.org.uk
Task 2: complete the following topics in the booklet

Topic	$\begin{array}{l}\text { Title }\end{array}$	$\begin{array}{l}\text { Comments. } \\ \text { Do you need more practice? } \\ \text { Completed } \\ \text { (date) }\end{array}$	
1	Prefixes and units		
What areas of weakness have you identified?			

AS Physics

Skills

1. Prefixes and units

In Physics we have to deal with quantities from the very large to the very small. A prefix is something that goes in front of a unit and acts as a multiplier. This sheet will give you practice at converting figures between prefixes.

Symbol	Name	What it means		How to convert	
P	peta	10^{15}	1000000000000000		$\downarrow \mathrm{x} 1000$
T	tera	10^{12}	1000000000000	$\uparrow \div 1000$	$\downarrow \mathrm{x} 1000$
G	giga	10^{9}	1000000000	$\uparrow \div 1000$	$\downarrow \mathrm{x} 1000$
M	mega	10^{6}	1000000	$\uparrow \div 1000$	$\downarrow \mathrm{x} 1000$
k	kilo	10^{3}	1000	$\uparrow \div 1000$	$\downarrow \times 1000$
			1	$\uparrow \div 1000$	$\downarrow \mathrm{x} 1000$
m	milli	10^{-3}	0.001	$\uparrow \div 1000$	$\downarrow \times 1000$
μ	micro	10^{-6}	0.000001	$\uparrow \div 1000$	$\downarrow \times 1000$
n	nano	10^{-9}	0.000000001	$\uparrow \div 1000$	$\downarrow \mathrm{x} 1000$
p	pico	10^{-12}	0.000000000001	$\uparrow \div 1000$	$\downarrow \mathrm{x} 1000$
f	femto	10^{-15}	0.000000000000001	$\uparrow \div 1000$	

Convert the figures into the units required. units.

6 km	$=$	6×10^{3}	m
54 MN	$=$	N	
$0.086 \mu \mathrm{~V}$	$=$	V	
753 GPa	$=$	Pa	

Convert these figures to suitable prefixed

640			640×10^{9}
		V	
		0.5×10^{-6}	A
kN	$=$	93.09×10^{9}	m
	32×10^{5}	N	

Convert the figures into the prefixes required.

s	ms	$\mu \mathrm{s}$	ns	ps
0.00045	0.45	450	450000 or 450×10^{3}	450×10^{6}
0.000000789				
0.00000000064				

mm	m	km	$\mathrm{\mu m}$	Mm
1287360				
295				

2. Significant Figures

1. All non-zero numbers ARE significant. The number 33.2 has THREE significant figures because all of the digits present are non-zero.
2. Zeros between two non-zero digits ARE significant. 2051 has FOUR significant figures. The zero is between 2 and 5
3. Leading zeros are NOT significant. They're nothing more than "place holders." The number 0.54 has only TWO significant figures. 0.0032 also has TWO significant figures. All of the zeros are leading.
4. Trailing zeros when a decimal is shown ARE significant. There are FOUR significant figures in 92.00 and there are FOUR significant figures in 230.0.
5. Trailing zeros in a whole number with no decimal shown are NOT significant. Writing just " 540 " indicates that the zero is NOT significant, and there are only TWO significant figures in this value.
(THIS CAN CAUSE PROBLEMS!!! WE SHOULD USE POINT 8 FOR CLARITY, BUT OFTEN DON'T - $\mathbf{2 / 3}$ significant figures is accepted in IAL final answers - eg 500/260 = 1.9 to 2 sf. Better $5.0 \times 10^{2} / 2.6 \times 10^{2}=1.9$)
6. For a number in scientific notation: $\mathrm{N} \times 1 \mathbf{1 0}^{\mathrm{x}}$, all digits comprising N ARE significant by the first 5 rules; " 10 " and " x " are NOT significant. 5.02×10^{4} has THREE significant figures.

For each value state how many significant figures it is stated to.

Value	Sig Figs						
2		1066		1800.45		0.070	
2.0		82.42		2.483×10^{4}		69324.8	
500		750000		0.0006		0.0063	
0.136		310		5906.4291		9.81×10^{4}	
0.0300		3.10×10^{4}		200000		40000.00	
54.1		3.1×10^{2}		12.711		0.0004×10^{4}	

When adding or subtracting numbers

Round the final answer to the least precise number of decimal places in the original values.
Eg. $0.88+10.2-5.776(=5.304)=\underline{\mathbf{5} .3}$ (to 1d.p., since 10.2 only contains 1 decimal place)
(Khan Academy- Addition/ subtraction with sig fig excellent video- make sure you watch .)
Add the values below then write the answer to the appropriate number of significant figures

Value 1	Value 2	Value 3	Total Value	Total to correct sig figs
51.4	1.67	3.23		
7146	-32.54	12.8		
20.8	18.72	0.851		
1.4693	10.18	-1.062		
9.07	0.56	3.14		
739762	0.002	2.058		
8.15	0.8	0.55		
152				

When multiplying or dividing numbers

Round the final answer to the least number of significant figures found in the initial values.
E.g. $4.02 \times 3.1 \mid 0.114=(109.315 \ldots)=\underline{110}$ (to 2 s.f. as 3.1 only has 2 significant figures.

Multiply the values below then write the answer to the appropriate number of significant figures

Multiply the values below then write the answer to the appropriate number of significant figures			
Value 1	Value $\mathbf{2}$	Total Value	Total to correct sig figs
0.91	1.23		
8.764	7.63		
2.6	31.7		
937	40.01	634.23	

Divide value 1 by value 2 then write the answer to the appropriate number of significant figures

Value 1	Value 2	Total Value	Total to correct sig figs
5.3	748		
3781	6.50		
91×10^{2}	180		
5.56	22×10^{-3}		

When calculating a mean

1) Remove any obvious anomalies (circle these in the table)
2) Calculate the mean with the remaining values, and record this to the least number of decimal places in the included values
E.g. Average 8.0, 10.00 and 145.60:
3) Remove 145.60
4) The average of 8.0 and 10.00 is $\underline{9.0}$ (to 1 d.p.)

Calculate the mean of the values below then write the answer to the appropriate number of significant figures

Value 1	Value 2	Value 3	Mean Value	Mean to correct sig figs
1	1	2		
435	299	437		
5.00	6.0	29.50		
5.038	4.925	7.900	725	
720.00	0.00039	30.314	29.7	

3. Rearranging Equations

Rearrange each equation into the subject shown in the middle column.

Eamam		nemasestamem
$V=I R$	R	
$I=\frac{Q}{t}$	t	
$\rho=\frac{R A}{l}$	A	
$\varepsilon=V+I r$	r	
$s=\frac{(u+v)}{2} t$	u	

$h f=\phi+E_{K}$	f	
$E_{P}=m g h$	g	
$E=\frac{1}{2} F e$	F	
$v^{2}=u^{2}+2 a s$	u	
$T=2 \pi \sqrt{\frac{m}{k}}$	m	

